
RoboNetSim: An Integrated Framework for Multi-robot and Network Simulation

Michal Kudelski, Luca M. Gambardella, Gianni A. Di Caro1

Dalle Molle Institute for Artificial Intelligence (IDSIA) - Lugano, Switzerland

Abstract

In networked multi-robot systems the influence of inter-robot communication plays a major role defining the dynamics and the
performance of the system. Taking into account the intrinsic unreliability of wireless communications, the control policies need to
be designed to be robust against communication errors. This can be put to test through controlled real-world experiments and/or
extensive realistic simulations, before the system is eventually deployed in the environment. Due to the efforts and costs related
to setup and run real-world tests, simulation environments can play a main role in the development of large multi-robot systems.
Unfortunately, existing multi-robot simulators do not provide advanced communication models.

Addressing this issue, in this paper we present RoboNetSim: an integrated simulation framework that allows for realistic simula-
tion of networked multi-robot systems and can complement the use of more expensive real-world testbeds. RoboNetSim integrates
two simulators: a network simulator and a multi-robot simulator. We present two model implementations based on the ARGoS
simulator at the robotic side, and with NS-2 and NS-3 employed as network simulators. To support the soundness of the approach,
we discuss the reliability and validity of network simulations, as analyzed in the networking literature. We evaluate the proposed
tools, both in isolation and integration, and show that they are able to efficiently simulate systems consisting of hundreds of robots.
We also provide a step-by-step guide on how to smoothly integrate a robotic simulator with RoboNetSim, using the popular Stage
simulator as an example (and thus, presenting a third implementation of our framework). We perform the whole integration within
a user-written robotic controller, without changing the source code of Stage.

Finally, we use the proposed framework to demonstrate the effects of communication on mobile multi-robot systems. We consider
two different case studies: a distributed coordination and task assignment scenario, and a coordinated mobility scenario. We
compare realistic network simulation with simplified communication models and we study the resulting behavior and performance
of the multi-robot system.

Keywords: networked robotics, simulation, communication, distributed coordination, multi-robot systems

1. Introduction

There are three main motivations behind the use of multi-
robot systems compared to single-robot approaches. The
first one is robustness, which is particularly important in au-
tonomous robotics: if one of the robots fails, other robots can
potentially take over its tasks. The second motivation is effi-
ciency: some tasks can be naturally solved more efficiently by
exploiting the intrinsic parallelism and distributedness of multi-
robot systems. The third one is efficacy: tasks that may be un-
reachable for individual robots could be effectively solved by
a robot team through an explicit synergy of behaviors. These
motivations lie at the roots of swarm robotics [1], and other ap-
proaches to distributed robotics.

Although the robots of a multi-robot system can be designed
to act as autonomous and independent agents, in most cases
the key to best exploit the capabilities of a multi-robot system
lies in the use of information sharing. Coordination, cooper-
ation and behavioral synergies, they all require the robots to

Email addresses: michal@idsia.ch (Michal Kudelski),
luca@idsia.ch (Luca M. Gambardella), gianni@idsia.ch (Gianni A. Di
Caro)

1Gianni A. Di Caro is corresponding author.

exchange information. This applies to autonomous robotic sys-
tems, where robots exchange the information within a team, as
well as to externally controlled systems, where robots may be
required to aggregate gathered information and send it to the
control center to close the loop. In any case, effective commu-
nication tools and techniques are desired in order to unleash the
full power of a multi-robot system.

Robot communications can be realized in many different
ways using different physical interfaces. In the literature one
can find approaches based on indirect communication via sens-
ing or via interaction with the environment (see [2, 3] for a
review), or based on simple direct communication between
robots, e.g. utilizing visual communications based on LEDs [4].
If robots are not mobile, fixed telecommunication lines can be
reliability employed for high-bandwidth data exchange. How-
ever, in the context of mobile multi-robot systems, which is the
case we focus on in this paper, it is rather obvious that wire-
less radio communication is the most powerful technique in
terms of fast and effective information sharing (e.g. [5]). How-
ever, when using wireless communications, one basic problem
arises. On the one hand, we expect the communication tools
to be effective and trustworthy to allow correct implementation

Preprint submitted to Robotics and Autonomous Systems August 22, 2012

of the desired cooperation and coordination strategies. On the
other hand, in the real world communications are not fully re-
liable. This is particularly true for wireless mobile ad hoc net-
works (MANETs [6]), which are the natural choice for fully
autonomous multi-robot systems. The presence of unreliable
communication can seriously affect the actual performance of a
multi-robot system. Therefore, this issue needs to be taken into
account while designing and simulating such systems.

In multi-robot (or multi-agent) systems, one typical approach
for dealing with the problem of unreliable communications con-
sists in trying to avoid or limit communication as much as pos-
sible, emphasizing the pure locality of interactions. This ap-
proach is popular in swarm robotics, where, for instance, the
above mentioned indirect communication is commonly used.
This way of proceeding, although it may increase the robustness
of the system as a whole, does not allow to fully benefit from
effective information dissemination and long-range interactions
that would be available from advanced wireless telecommuni-
cation techniques. In simulation-based works, another typical
approach is to make idealized assumptions about communica-
tion. For instance, in [7] authors assume that messages sent by
robots via broadcasting are immediately available to all other
robots. This approach allows to focus on other scientific issues,
yet makes the study less realistic. In fact, we claim that, in or-
der to reflect what happens in the real-world and properly vali-
date high-level team strategies, a communication model for net-
worked robotic systems, especially for large-scale ones, needs
to consider the operations of different network protocols, radio
interferences, and MAC layer collisions. As a matter of fact,
only a few works deal with the problem of realistic simulation
of communications among networked robots (see Section 2.2).

The above observations led us to the conclusion that there is
a strong need for investigating the actual influence of commu-
nication on the operation of multi-robot systems. Such studies
can be performed either on real robots or using advanced sim-
ulation tools. Unfortunately, real testbeds are costly, difficult
to realize and often limited in the number (and/or size) of ex-
periments that can be done. At the same time, there exists no
single tool that offers advanced and realistic simulation of both
robotic and communication issues.

The aim of this paper is precisely to propose a simulation
tool which is communication-realistic and helps understanding
the relation between the quality of communication and the op-
eration of a large multi-robot system (a partial version of this
work was published in [8]). We propose RoboNetSim: a general
framework that allows to combine physics-based multi-robotic
simulators with state-of-the-art network simulation tools. We
apply the proposed architecture and implement two integrated
simulation environments, both based on open source tools,
namely the NS-2 [9] and NS-3 [10] network simulators and the
ARGoS simulator, designed for swarm robotics [11]. The first
environment combines ARGoS with NS-2, and the second one
combines ARGoS with NS-3. We perform an extensive experi-
mental study to evaluate the general framework architecture and
the instantiated simulation tools in terms of computational per-
formance, correctness, and generated overhead. We show that
the integrated framework is able to efficiently and realistically

simulate systems consisting of hundreds of mobile robots.
The two integrated environments above are based on the

full integration of a robotic simulator with a network simula-
tor: they provide additional modules of the robotic simulator
(e.g., sensors, actuators, etc.) that make the integration with a
network simulator transparent to the user who develops robot
controllers. Since this integration process requires some struc-
tural changes in the simulators at hand, we also demonstrate
a simpler way of integrating with RoboNetSim. Namely, we
show a minimum number of steps that must be taken in order
to ’plug in’ a robotic simulator into the proposed architecture.
As a practical example, we consider the plug-in of the popular
Stage [12, 13] robotic simulator.

In order to show in practice the importance of realistic net-
work simulation and the impact of different communication
models, we employ RoboNetSim in the context of simple, yet
paradigmatic tasks for multi-robot cooperation and coordina-
tion. We design a distributed task-assignment problem and a
coordinated mobility problem, and we show that simulating
networking issues with different degrees of accuracy result in
different behaviors and performance. In turn, these would have
a clear impact on the final claims associated to a scientific work
in the multi-robot/swarm domain.

The rest of the paper is organized as follows. In Section 2
we discuss related work. We focus on the relation between
network simulations and reality (Sec. 2.1) and on the simula-
tion of networked multi-robot systems (Sec. 2.2). In Section 3
we present RoboNetSim as a general framework for integrat-
ing robotic simulators with discrete-event network simulators.
Section 4 demonstrates the application of the RoboNetSim ar-
chitecture in two integrated simulation environments. In Sec-
tion 4.5 we provide a step-by-step guide on how to simply plug-
in a robotic simulator in our framework. In Section 5 we ana-
lyze the proposed tools in terms of computational performance,
correctness, and generated overhead. Sections 6 and 7 present
two case studies showing how different simulated communica-
tion models affect the operation of multi-robot teams. Section 8
draws conclusions and outlines future work.

2. Related Work

2.1. Reliability of Network Simulations
We start discussing related literature focusing on the relations

between network simulations and reality. The key question that
needs to be answered first is: can existing network simula-
tion tools describe the communication behavior of a networked
multi-robot system with the desired/necessary accuracy?

In the context of ad hoc wireless communications, it is well
known that real-world results might significantly differ from the
results obtained through simulation. In [14] an extensive sur-
vey of real-world implementations of mobile ad-hoc networks
is presented, showing the discrepancy between simulation and
real-world. Various simplifications that are commonly made
in simulations and their impact on predicted outcomes are dis-
cussed in the context of key findings from real experiments.
Similar discussion, supported by routing experiments in large
outdoor areas, can be found in [15].

2

However, while these works seem to indicate, in general, a
gap between simulation and real-world, it is also known that
when the appropriate models with correct parameters are cho-
sen, simulation can provide important insights into the asymp-
totic behavior of large networks [16]. A discussion on the level
of detail that should be selected in wireless simulations can
be found in [17]. In [18], the authors combine a real testbed
consisting of driving cars and a proposed emulation technique.
They show that NS-2 can accurately simulate network traffic
in an ad-hoc network consisting of 16 moving vehicles. An
indoor static wireless network simulated in NS-2 is analyzed
in [19] showing that packet delivery ratios and the connectivity
graphs can be modelled with a high accuracy, providing that the
shadowing radio propagation model is used and properly cali-
brated. In [20] NS-2 simulations related to QoS issues in ad-hoc
networks are compared with real data, showing that experimen-
tal results are consistent with simulations in terms of overall
trends, although simulation results tend to be more optimistic
in terms of both delay and throughput measurements.

The accuracy of NS-3 to simulate Wi-Fi networks has been
assessed in a number of works. The real-world experiments
performed in [21] show that the results of the frame error rate
model for OFDM signals in the NS-3 are close to the experi-
mental data. In [22] a detailed validation of the IEEE 802.11
MAC Model in the NS-3 is provided: while in several cases
there are noticeable quantitative differences, in general there
is a good qualitative agreement between the simulator and the
considered testbed.

The accuracy of another network simulator, SWAN, has been
validated in [23] and [24]: with an appropriate choice of mod-
els, the simulator can accurately predict outdoor performance.

To sum up our discussion here, we can say that modern net-
work simulation techniques can be sufficient to give an over-
all overview on how a typical networked multi-robot system
will work in the real world. The necessary condition is that ap-
propriate models are chosen and they are properly calibrated,
meaning however that roboticists might need to build up a pro-
fessional profile regarding networking issues.

2.2. Simulation of Networked Multi-Robot Systems
A relatively large amount of work addresses the simulation of

multi-robot systems, there also exist many works about network
simulation. However, the number of works that combine these
two areas is limited. In particular, none of the existing multi-
robot simulators offers advanced communication models, and
none of the existing network simulators flexibly supports the
simulation of autonomous mobile robotic agents.

In order to picture the problem, we analyzed wireless com-
munication models available in four popular robotic simulators.
The current version of the Stage [12] simulator does not of-
fer any official wireless communication model. There exists
a patch, however, that provides a simple wifi model for older
versions (e.g., for Stage 3.2.2). The model offers five radio
propagation models, including a Simple Model (based on pre-
defined maximum communication range), the Friis Model, and
the Log Distance Path Loss Model. ARGoS [11] provides inter-
faces for wireless sensors and actuators, yet no implementations

are available in the release version. The development version
(available from authors) contains an implementation of wire-
less devices that can simulate a simple communication model
based on predefined range. The commercial Webots simula-
tor [25] provides an Emitter and a Receiver nodes that can be
used to model radio or infra-red emitters and receivers. One
can configure a maximum transmission range and an opening
angle of the emission cone (the latter only for infra-red emit-
ters). USARSim [26], a high-fidelity simulator of robots and
environments based on the Unreal Tournament game engine,
also offers some basic simulation of communications. Namely,
it is possible to exchange messages between two robots using a
Wireless Communications Server. The server acts as a middle
man for messages passed between the robots, dropping mes-
sages and connections between robots when they are not within
the communication range. The range is determined using an
indoor radio propagation loss model based on the Wall Attenu-
ation Factor (a free space path loss model that accounts for the
attenuation caused by walls [27]).

I any case, a general observation is that the considered
robotic simulators indeed provide only limited tools for sim-
ulating communications. The offered accuracy is modest and
does not go beyond the physical layer of the OSI model of the
network: all these communication models ignore transmission
collisions, media access control mechanisms, routing mecha-
nisms, etc.

As a consequence of the above facts, the majority of
simulation-based works in multi-robot systems make idealized
assumptions about communication. For instance, in [7] the au-
thors assume that messages sent by robots via broadcasting are
immediately available to all other robots. In [28], the influence
of limited communication range is investigated. However, the
approach is still far from realistic communication models that
would consider the operations of different network protocols,
radio interferences, etc. Similar simplifications are assumed in
other works. In [29], the behavior of a distributed coordination
algorithm is simulated assuming that robots within each other
range can communicate directly, and robots within a connected
subnetwork can use an idealized multi-hop communication. In
[30], [31] and [32], communication graphs are used, where two
nodes are connected if the distance between them is lower than
the assumed communication range.

There exist a few works, described below, that also try to
combine both network and robotic simulation tools in order to
perform more realistic simulations.

In [33], PiccSIM [34], a joint network and control simulation
tool combining MATLAB and Simulink with NS-2, is extended
to support mobility and applied to realistic simulations of a mo-
bile robot squad. The research focused on applying PiccSIM to
compare a single-path routing protocol with a multi-path rout-
ing protocol in one specific scenario.

Modelica [35] is similar to PiccSIM, it combines NS-2 with a
modeling language for large-scale physical systems. However,
this tool has not been applied to robotic scenarios.

An integrated tool consisting of the Arena robotic simulator
(the precursor of the Player/Stage [12]) and NS-2 was presented
in [36]. The system is applied to compare two communication

3

strategies for a group of six robots performing a resource trans-
portation task. The interface between both simulators is sim-
ilar to ours. However, compared to our work, it was neither
generalized to support other simulators nor an analysis of the
computational performance was performed. Moreover, simula-
tions were supposed to run no faster than the real-time, while
we report about the simulations where up to 200 nodes were
simulated faster than the real-time (see Sec. 5.1).

In [37], the ARMS multi-robot simulator and a network sim-
ulator for the DSDV ad hoc routing protocol, both developed by
the same authors of the paper, are combined to study a multi-
robot rescue system forming a network chain used to relay in-
formation to a base station.

MiNT-m [38] is a testbed platform devised to support ex-
perimentation for mobile multi-hop wireless networks. It en-
ables reconfiguration on an experiment-by-experiment basis, by
putting each testbed node on a mobile robot centrally controlled
through a wireless connection. Centralized robot navigation is
based on vision and a trajectory planner for collision avoidance.

A relatively new research area related to mobile multi-robot
system is that of vehicular networks. Despite many obvious
differences, the simulation of vehicular networks faces issues
similar to those faced in the simulation of networked robots.
In particular, there exists a strong need for combining realis-
tic vehicle traffic simulation models with accurate communi-
cation models [39]. A number of integrated tools have been
therefore proposed to realize such a combination, consider-
ing popular network simulators such as NS-2, NS-3 and OM-
NeT++ [40, 41, 42].

Although all the different approaches that we have discussed
contribute with ad hoc solutions to specific problems, to the best
of our knowledge, a general framework for the integration of
multi-robot and network simulation does not exist. Moreover,
no dedicated tools for multi-robot systems have proven to real-
istically simulate networked scenarios with hundreds of robots,
as in the case of robot swarms. In the large majority of the
previous studies, the adopted tools were not evaluated in terms
of the computational performance, correctness, and overhead
in comparison to simplified communication models. Finally,
no direct comparisons were performed in terms of resulting be-
haviors between advanced communication models and simpli-
fied ones in the context of multi-robot systems. In this paper,
we attempt to cover all of these issues.

3. RoboNetSim: An Integrated Simulation Framework

In this section we describe RoboNetSim, our general frame-
work that allows to simulate networked multi-robot systems in
a more realistic way, emphasizing the communication aspects.
As both network simulation and multi-robot simulation are well
established domains, the RoboNetSim framework assumes the
application of state-of-the-art simulation tools. Namely, we
simulate the robotic issues (sensors, actuators, physics engines,
etc.) in a dedicated multi-robot simulator, and simulate the
communication issues (radio propagation models, network pro-
tocols, etc.) in a dedicated network simulator.

Robotic simulators are usually discrete-time simulators with
a constant time step (e.g., Stage, ARGoS, Gazebo [43]),
whereas network simulators are discrete-event simulators (e.g.,
NS-2, NS-3, QualNet [44]). The former type of simulation as-
sumes that the time step is fixed at the beginning of the sim-
ulation, time advances in equal increments, and the state of
the system is updated periodically. In the discrete-event sim-
ulations the system changes its state in response to events, the
simulated time advances from one event to the next, with the
time between the events constantly changing. RoboNetSim ad-
dresses the problem of combining the operation of a time-driven
robotic simulator with an event-driven network simulator.

3.1. Information flow
The interaction between the two simulation environments re-

quires solving two fundamental issues. First, simulation time
needs to be synchronized between the simulators. Second, all
the required data about the system’s state must be efficiently
exchanged between the simulators. The general scheme of the
information flow between the robotic simulator and the network
simulator in the RoboNetSim framework is showed on Figure 1.

Robotic simulator

initial parameters

Network simulator

simulated time

robots positions

data packets

additional data

Figure 1: Information flow in the RoboNetSim framework.

In the initial phase, the simulators exchange the parameters
of the simulation (e.g., time step, number of robots, character-
istics of communication equipment, size of the simulation area)
and the network simulator creates a network with mobile nodes
corresponding to simulated robots. Then, both simulators pe-
riodically exchange the information about their internal simu-
lation time. In addition, at each simulation step, the robotic
simulator sends the updated positions of all robots to the net-
work simulator, which in turn updates the positions of the cor-
responding network nodes. Finally, when robots need to com-
municate with each other, the corresponding data packets are
passed to the network simulator, together with their destina-
tions. The network simulator performs the simulation of the
communication, and transfers back to the robotic simulator the
data packets that were successfully delivered.

The general scheme above includes the exchange of the min-
imal, strictly necessary set of data to guarantee the coordina-
tion between the simulators. RoboNetSim, however, allows to
transfer between the simulators any type of useful data. One
example may be the case in which robots’ control algorithms
and network control algorithms depend on each other. For in-
stance, a routing algorithm can ask a node controller to move
the robot towards a certain direction in order to locally improve
network connectivity. Similarly, robotic controllers could use

4

network information about traffic congestion to decide whether
to exchange only strictly necessary information or send large
amount of data into the network. The information about com-
munication failures could also be exchanged and used to take
some actions at the controller (e.g., controllers could increase
the redundancy of the crucial information that is sent into the
network).

Another notable example of additional data exchange be-
tween the simulators and of their mutual dependencies, regards
the presence of physical objects in the robotic environment,
which can affect communications. In general, physical objects
(e.g., obstacles, walls) and robots themselves can attenuate the
wireless signal, generate noise and reflections, etc. RoboNet-
Sim allows to send information about the presence of such ob-
jects to the network simulator, where it can be used to improve
the accuracy of the communication model. 2

3.2. The Architecture
In order to realize the above information flow, we designed

the following architecture (Figure 2). The schedulers of both
simulators are connected with each other and exchange the syn-
chronization data and the information about robots’ positions.
For each simulated robot, there exists an application at the ap-
plication layer of the simulated network. The application is in-
stalled on the network node corresponding to the robot. There
exists a connection between this application and the objects that
represent robot’s communication devices. The connection is
used each time the robot needs to send new data and also each
time the application receives data that need to be passed to the
robot (i.e., when the network simulator indicates a successful
delivery to the robot).

In principle, any of the inter-process communication tech-
niques could be used for data exchanging between the simula-
tors, including sockets, message queues, shared memory, and
message passing. In our implementations we decided to use the
socket API. We based our decision on several factors that im-
ply the flexibility of this technique. First, sockets can be used
both locally and remotely, allowing for distributed simulations
as well. Second, sockets are platform independent, thus both
simulators can actually work under different operating systems.
Finally, sockets provide both blocking and unblocking commu-
nication interface, allowing to synchronize the simulated times
in both simulators, and provide, at choice, both fully reliable
(TCP) and potentially unreliable, but with less overhead (UDP),
connections.

To complete the view of the proposed architecture, we
present an illustrative timeline diagram (Figure 3). It can be
seen that synchronization takes place at the beginning of each
simulation step i. During the synchronization window, also
the information about robots’ positions is exchanged. Then,
within the simulation step i, the robotic simulator performs all
its tasks, including reading from a buffer the messages that were

2Unfortunately, the capability to take into account the presence of obstacles
is not commonly available in current network simulators. Therefore, we will
exploit this direction in future work, since it requires the adaptation of the radio
propagation models in the network simulators.

Robot 2Application 2

SCHEDULER

Network

simulator

Robotic

simulator

SCHEDULER

synchronization

Robots positions

Robot 1Application 1

Robot NApplication N

data

data

data

Figure 2: Architecture of the RoboNetSim framework.

delivered during the previous simulation step, and sending new
messages to the network simulator. At the same time, the net-
work simulator waits until all the new messages are received
(implemented as a blocking read operation), holding the sim-
ulated time at the beginning of the simulation step i. Then,
it proceeds with simulating communications until reaching the
simulated time corresponding to the beginning of the next sim-
ulations step i + 1. The delivered messages are stored in the
buffer, where they will be read by the robotic simulator during
the next step (implemented as a non-blocking read operation).

BufferBuffer Buffer

re
a
d

m

e
s
s
a
g

e
s send

messages

re
a
d

m
es

sa
g
e
s

s
y

n
c

p
o

s
it

io
n

s

s
y

n
c

p
o

s
it

io
n

s

delivered delivered delivered

step istep i-1 step i+1

time line

Network

simulator

Robotic

simulator

Figure 3: Timeline diagram of the combined simulation.

4. Sample Implementations

In this section, we present two model implementations of
RoboNetSim. Both of them fully integrate a network simulator
with a robotic simulator, in a way that is (almost) transparent to

5

the user. We also show an easier way of integrating a robotic
simulator with our architecture, performing only the minimum
required number of modifications.

Source files of the proposed tools will be made available at
the address http://www.idsia.ch/~gianni/SwarmRobotics/

simulation/.

4.1. Robot and Network Simulators

In our model implementations, we used three existing, open
source tools: ARGoS [11] for multi-robot simulation, and NS-
2 [9] and NS-3 [10] for network simulation. For our step-by-
step guide on integrating a robotic simulator with our frame-
work, we used the popular Stage [12] open source simulator.

ARGoS is a multi-physics-based simulator for large hetero-
geneous robotic swarms. It is a highly scalable and easily ex-
tensible tool programmable in C++. It provides ready-to-use
models of several different robots, and the controllers written
in the simulation environment can be directly ported to real
robots. According to [11] ARGoS can simulate thousands of
simple wheeled robots faster than real-time.

Stage can simulate a population of mobile robots, sensors
and objects in a two-dimensional environment. Stage provides
fairly simple, computationally cheap models of lots of devices.
Stage is commonly used together with Player, a network server
for robot control.

NS-2 is one of the most used simulation environments for
computer networks. It covers both wired networks and mo-
bile wireless communication networks. NS-2 is an open-source
project including a large set of contributed models for all net-
work layers. NS-2 is based on two programming environments:
C++ for computations and OTcl for configuration.

NS-3 is an independent successor of NS-2. Despite the sim-
ilar name, it has a significantly different design. It is still a
discrete-event simulator, yet it was created from scratch and
written entirely in C++. It is better designed and more efficient
than NS-2, and provides some more accurate communication
models (e.g., of 802.11 networks). However, it is a relatively
new project and it still offers less ready-to-use models than NS-
2 (e.g., at the moment it does not support 802.15 networks).

4.2. ARGoS Interface

From the user’s perspective, the core functionality of AR-
GoS is the possibility of writing controllers for various types
of robots. Controllers are C++ programs that are called once
per every simulation step. Therefore, in every simulation step,
the controller can read the state of sensors, perform its internal
logic, and send commands to actuators.

We provide an additional sensor and an additional actua-
tor, which are the only extensions of ARGoS visible to user.
Namely, we provide an external wireless sensor and an exter-
nal wireless actuator that together represent a wireless com-
munication device. In the robot controller, users can write mes-
sages (together with their destinations) to the new actuator, and
read the messages delivered to the robot from the new sensor.
The whole integration with a network simulator is fully trans-
parent for users.

When a user decides to equip a robot with the wireless com-
munication device, a new wireless entity is associated with the
robot. The wireless entity is another extension of ARGoS, yet
invisible to the user. The entity communicates directly with the
network application installed on the network node that corre-
sponds to the given robot (at the network simulator’s side). At
every simulation step, before the controllers’ code is invoked,
the wireless entity reads all the messages that were send from
the network application and were addressed to a given robot
and makes them accessible for the wireless sensor. Similarly,
after the controllers’ code is executed, it sends all new mes-
sages from the wireless actuators to the network application.

We also provide a wireless medium as an additional com-
ponent. A medium in ARGoS is a virtual entity, that does not
finds a counterpart in the physical space which is simulated,
but that can interact with other simulated objects. The wire-
less medium is responsible for initializing the communication
with the network simulator, exchanging the simulation param-
eters, and then periodically synchronizing the simulated time
with the scheduler of the network simulator. It also sends the
information about robots’ coordinates to the network simulator.

4.3. NS-2 Interface

The NS-2 interface consists of three core elements: an AR-
GoS synchronizer, an ARGoS agent, and an ARGoS genera-
tor. The ARGoS synchronizer is an object responsible for the
communication and synchronization with the wireless medium
(at the ARGoS simulator side). It also updates mobile nodes po-
sitions in the simulated network, according to the information
received from the wireless medium.

The ARGoS agent is a network application installed on each
node of the simulated network. It communicates directly with
the wireless entity of the corresponding robot (at the ARGoS
side). At the beginning of every simulation step, the ARGoS
agent waits until it receives all new messages generated by the
associated robot (or the information that no new messages are
available). Only after all agents have received such informa-
tion, the simulated time in the network simulator proceeds. All
new messages are immediately passed to the appropriate AR-
GoS generator (an NS-2 traffic generator object), which creates
corresponding NS-2 packets and sends them out through the
network. When the ARGoS agent of the destination node re-
ceives the packet, it immediately sends it to the corresponding
robot (at the ARGoS side).

4.4. NS-3 Interface

NS-3 has a significantly different architecture compared to
NS-2: it is a C++ library providing a set of network simulation
models implemented as C++ objects and can be loaded by any
user application. Therefore, only two components are required
for NS-3 to cooperate with ARGoS: an ARGoS scheduler ap-
plication and an ARGoS network application.

The ARGoS scheduler is the main application that defines
the communication scenario, sets its parameters, loads network
simulation models, and controls the run of the simulation. At

6

http://www.idsia.ch/~gianni/SwarmRobotics/simulation/
http://www.idsia.ch/~gianni/SwarmRobotics/simulation/

the same time, it is responsible for initializing the communi-
cation with ARGoS and exchanging the initial simulation pa-
rameters. While the simulation is running, the scheduler peri-
odically triggers the synchronization events, receives the robot
coordinates from ARGoS, and updates the positions of network
nodes accordingly.

The ARGoS network application is installed on every node
of the network and plays exactly the same role as the ARGoS
generator and the ARGoS agent in the NS-2 interface. As NS-
3 uses its internal socket API to send data between nodes, one
single network application can do the job and there is no need
for additional traffic generating applications.

4.5. Step-by-step Integration: Stage Simulator

In the previous sections we described how to perform a full
integration of robotic and network simulators in the RoboNet-
Sim framework. The main advantage of this approach is its full
transparency for the end-user. Namely, the user can access the
communication capabilities by simply interfacing with commu-
nication sensors and actuators, using the same interface as in
the case of any other sensors/actuators. However, a function-
ally equivalent result can be also obtained without developing
additional modules for the robotic simulator, as we did in the
case of ARGoS. In the following, we provide a step-by-step
guide showing that the integration can be also performed with-
out changing the structure of the robotic simulator. Actually, all
the required steps are performed in the robotic controller.

We use the Stage simulator as an example. We extend
a sample FASR controller provided with the Stage installa-
tion as a fasr.cc source file. We have chosen FASR be-
cause of its simplicity. FASR controls robots that move be-
tween a nest and a source of items, avoid obstacles, and trans-
port items to the nest. Our extension provides a possibility
of exchanging data between the robots, and employs a net-
work simulator in order to simulate the communication is-
sues. The modified controller’s source file will be available to-
gether with other sources, at http://www.idsia.ch/~gianni/
SwarmRobotics/simulation/.

The integration procedure is as follows:

1. Open scheduler sockets.
In Stage, the main simulation loop is executed by the
World object. Therefore, this would naturally be the ob-
ject to act upon to synchronize the simulation time with the
scheduler of the network simulator. However — as we do
not want to modify the World object — we can perform the
synchronization indirectly in a robotic controller, which is
periodically called by the World object in each simulation
step. Namely, we propose to designate one of the robots
(and call it a master robot) to be responsible for commu-
nication with the network simulator. Inside the controller
of this robot, during the controller’s initialization phase,
we need to open a communication socket to the network
simulator. In our implementation, the network simulator’s
scheduler expects that the connection is established using
the port base port number, which can be set as a parame-
ter.

2. Open application sockets.
During the initialization phase of a robotic controller, it is
required that a connection to the corresponding application
at the network simulator side is established. This connec-
tion is further used to exchange data packets between the
simulators. At this aim, the controller of each robot needs
to open a communication socket to the network simulator
(including the master robot, that should be already con-
nected to the scheduler of the network simulator). We as-
sign a unique ID to each robot (an integer value, starting
from 0), and every robot should open a socket on the port
number (port base + 1 + ID), where the corresponding
network application is waiting for the connection.

3. Exchange initial information.
Before starting the main loop, Stage needs to initialize the
connection with a network scheduler. It has to send basic
information to the network simulator (e.g., the simulation
arena size, the number of robots, etc.) and receive the ac-
knowledgement of reception. We perform this during the
initialization of the master robot’s controller.

4. Send a ’start’ packet from each robot.
Similarly, every robotic controller needs to initialize the
connection with the corresponding network application by
sending a predefined start packet.

5. [in a loop:] Synchronize time and send robots posi-
tions.
At the beginning of each simulation step, the World object
is required to wait for a synchronization packet from the
network simulator. After packet reception, it sends posi-
tion updates for every robot. Again, we use the controller
of the master robot here. Inside the controller, we set up
an additional callback in the World object (Stage provides
an interface for this). This callback is called by the World
object at the end of each simulation step.

6. [in a loop:] Send and receive messages in the robot con-
troller.
During each simulation step, robot controllers can use
their application sockets to send new data packets to other
robots (using the unique IDs as destination addresses)
and/or receive messages sent by other robots.

5. Evaluation Study

In this section, we report the results of an experimental study
evaluating two of the presented simulation tools, the integrated
ARGoS/NS-2 and ARGoS/NS-3 simulators. We analyze the
performance, in terms of the consumed CPU time (Section 5.1),
and the overhead of the proposed architecture. Namely, we
study how much CPU time is consumed by the more accurate,
integrated simulation environment in comparison to the stan-
dalone simulators executing the same scenarios (Section 5.2).
We also show that the proposed architecture integrating and
synchronizing two different simulation tools is correct, in the
sense that is does not introduce unexpected errors. In particu-
lar, the results produced at both sides of the simulation are ex-
actly the same as the results produced on standalone simulators
provided with the same input (Section 5.3).

7

http://www.idsia.ch/~gianni/SwarmRobotics/simulation/
http://www.idsia.ch/~gianni/SwarmRobotics/simulation/

In all studied scenarios, we simulate a group of foot-
bots, small ground robots developed within the project Swar-
manoid [45] (http://www.swarmanoid.org). ARGoS, de-
veloped in the same project, includes accurate models for these
robots. Foot-bots move across a squared simulation area at a
speed of 1 m/s, performing a simple collision avoidance based
on proximity sensors which makes them turn away from each
other and from the walls. Robot mobility is determined by a
kind of a diffusion process with random initial state (the robots
are initially placed in the arena according to a uniform random
distribution, and with a random orientation). The simulation
arena is limited by fixed walls, and its size depends of the num-
ber of simulated robots: we set the basic size to 500 × 500 m2

for 50 robots, while for different swarm sizes we adjust the area
to keep constant the average node density. In ARGoS, we set
the simulation step to 0.1s and we use a 2D dynamics physics
engine. In both network simulators, we use their default set-
tings for simulating 802.11 networks. We use AODV [46] as
multi-hop routing algorithm, the UDP protocol in the transport
layer, and and we adopt traffic patterns that are commonly used
in MANET research.

5.1. Computational Performance

The computational performance is evaluated using the fol-
lowing scenario. We vary the number of simulated robots be-
tween 25 and 250 (400 in NS-3). Robots form a multi-hop
ad-hoc communication network. We randomly choose 20%
of nodes to generate a CBR (Constant Bit Rate) traffic. Each
node sends 5 packets per second to one randomly chosen des-
tination node. The simulation is executed for 1000 seconds.
We measure the CPU time consumed by both processes: the
robotic simulator process (ARGoS, in single-threaded mode)
and the network simulator process (NS-2 or NS-3, both single-
threaded). Each measurement is averaged over 10 runs. The
measurements are performed on a dedicated PC equipped with
the Intel Core i7-2600 CPU (3.40GHz, 4 cores) and 8GB of
RAM memory. The results are presented in Figure 4.

It can be seen that the environment using NS-3 achieves a
better scalability, which is in agreement with the results pre-
sented in the literature [47]. NS-2 is able to simulate scenarios
up to 250 robots in a reasonable time, whereas NS-3 effectively
deals with scenarios up to 400 robots. Real-time or faster sim-
ulation is possible up to 100 nodes (with NS-2) and up to 200
nodes (with NS-3). It is worth noticing that ARGoS is the ’bot-
tleneck’ only below a certain number of nodes (75 for NS-2,
100 for NS-3). After that most of the CPU time is consumed
by the network simulators. Thus, the possibility of parallel net-
work simulations announced by the NS-3 developers would be
desirable and could significantly increase the scalability of the
proposed solution.

Overall, the experiments have confirmed that the RoboNet-
Sim framework can offer realistic simulations of networked
multi-robot systems consisting of hundreds of robots, that can
be performed in a reasonable time on typical PC machines.

25 50 75 100 125 150 175 200 225 250
0

1000

2000

3000

4000

5000

6000

Number of nodes

C
P

U
 t

im
e

 [
s

]

ARGoS

ns−2

ARGoS

ns−2

50 100 150 200 250 300 350 400

0

500

1000

1500

2000

2500

Number of nodes

C
P

U
 t

im
e

 [
s

]

ARGoS

ns−3

ns−3

ARGoS

Figure 4: Computational performance in terms of the consumed CPU time. The
integrated ARGoS/NS-2 (top) and ARGoS/NS-3 (bottom) environments.

5.2. Overhead
Our study of the overhead aims to answer the following ques-

tion: how much do we need to pay, in terms of the computation
time, for more realistic communication models in robotic sim-
ulations? We define the overhead as the difference between the
total CPU time consumed by the combined network and robot
simulators, and the CPU time consumed by the standalone AR-
GoS with the simplified communication model. We considered
the following simulation setups:

• integrated ARGoS/NS-2,

• integrated ARGoS/NS-3,

• standalone NS-2,

• standalone NS-3,

• standalone ARGoS (with a simplified one-hop communi-
cation based on a predefined communication range).

We varied the number of nodes between 25 and 200, and we set
the simulation time to 200 seconds. The rest of the parameters
remained the same as in Section 5.1. Again, we measured the
CPU time. The results related to NS-2 are presented in Table 1,
and the results related to NS-3 in Table 2.

From the results we can observe that the overhead increases
with the number of nodes. Over 100 nodes the overhead is
mostly related to the computational requirements of the net-
work simulators. In general, NS-3 generates a lower overhead
(roughly half, for the scenarios with more than 100 nodes) com-
pared to NS-2.

As benefits usually come at a cost, the increased accuracy in
the simulation of communications requires additional compu-
tational effort. However, cost seems reasonable and affordable:
for a realistic simulation of 100 networked robots, we ’only’
need to pay twice as much the cost for a very simplified one.

8

http://www.swarmanoid.org

Table 1: Overhead of the integrated ARGoS/NS-2 environment, as compared
to the standalone simulators.

Nodes ARGoS with NS-2 Standalone
number ARGoS NS-2 sum ARGoS NS-2

25 9.1 3.1 12.2 9.5 2.8
50 17.9 16.6 34.5 18.3 16.0
75 26.1 36.3 62.4 27.8 38.5

100 30.2 76.2 106.4 40.5 81.1
125 35.2 217.0 252.2 53.6 212.8
150 41.3 284.4 325.7 68.7 329.6
175 46.3 365.2 411.5 83.5 403.3
200 51.9 393.7 445.6 103.3 567.9

Table 2: Overhead of the integrated ARGoS/NS-3 environment, as compared
to the standalone simulators.

Nodes ARGoS with NS-3 Standalone
number ARGoS NS-3 sum ARGoS NS-3

25 9.0 2.9 11.9 9.5 3.4
50 17.6 15.2 32.8 18.3 19.2
75 24.8 34.9 59.7 27.8 28.6

100 30.8 52.8 83.6 40.5 53.2
125 37.0 106.7 143.7 53.6 98.7
150 42.2 124.8 167.0 68.7 133.9
175 46.7 150.3 197.0 83.5 174.9
200 52.7 259.5 312.2 103.3 288.5

5.3. Correctness

To validate the correctness of the proposed tools, we per-
formed the following study. We selected a number of different
simulation scenarios and we executed them in both the inte-
grated simulation tools, and in the standalone NS-2/NS-3 simu-
lators with exactly the same mobility and traffic generation pat-
terns. To achieve this, during the simulations with integrated
simulators we gathered detailed mobility traces and we reused
them in the standalone NS-2/NS-3 simulators. We forced traf-
fic generators to create the same data packets as were generated
by robots, and to create them at the same simulated time. Fi-
nally, we carefully set the same seeds for the random number
generators.

The resulting communication traces generated by standalone
NS-2/NS-3 simulators were directly compared with the ones
generated by the combined ARGoS and NS-2/NS-3 environ-
ments. We also compared the output of the simulations, in
terms of observed delays and packet delivery ratios. The results
showed that precisely the same values were obtained for both
standalone and integrated simulators (as such, we omit the
plots). Therefore, this confirms the correctness of the proposed
integrated tools.

However, there is one important remark to be made here. We
analyzed the correctness from the perspective of network simu-
lators. Yet, one needs to remember that from the robotic simula-

tor’s point of view there is some inherent error introduced by the
fixed value of the simulation step. There are two main effects
that can be observed: effect of delays in the robotic simulator
and effect related to imprecise mobility information passed to
the network simulator.

The first effect can be illustrated as follows. The robotic sim-
ulator cannot generate packets with a higher frequency than the
assigned simulation step. At the same time, the delivered data
packets are always received with some delay depending on the
time duration of the simulation step. Assuming that in the net-
work simulator packets reach their destinations at times that are
randomly and uniformly distributed over time, than the aver-
age delay caused by this effect should be equal to the half of
the simulation step size. Simulation results for the considered
mobility and traffic patterns confirm that (Table 3).

Table 3: Average delay between receiving a packet in the network simulator
and receiving the same packet in the robotic simulator, measured for different
simulation step values (integrated ARGoS/NS-2 environment).

Simulation step [sec] Averaged delay [sec]
0.01 0.0049
0.05 0.0262
0.1 0.0521
0.2 0.138
0.5 0.252
1.0 0.537

The second effect is connected with the frequency of position
updates, determined by the simulation step. Even small differ-
ences in mobility can influence connectivity in the network at
the given time, and this in turn may influence the whole simula-
tion results. To demonstrate this, exactly the same experiment
was repeated several times, varying the frequency of position
updates at the network simulator’s side. The results in terms of
averaged packet delays were similar, yet not exactly the same.
We present results for three selected simulation step sizes: 0.01,
0.02 and 1.0 seconds (Fig. 5).

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

Time [sec]

A
v
e
ra

g
e
d

 p
a
c
k
e
t

d
e
la

y
 [

s
e
c
]

0.01

0.02

1.0

Figure 5: Packet end-to-end delay, averaged in a moving window. The same
experiment repeated for three values of the simulation time step: 0.01, 0.02 and
1.0 seconds (integrated ARGoS/NS-2 environment).

Therefore, the value of the simulation step need to be care-
fully chosen, taking into account the dynamics of robots mo-
bility, the dynamics of communication (and its influence on the

9

system), and the available computational resources.

6. Application Scenario 1: Coordinated Mobility

In this section, we use one of the proposed tools to show that
the selected communication model indeed affects the operation
of a multi-robot system in a significant way, determining a bias
in the final results and the way they are claimed out. More
specifically, we use the integrated ARGoS/NS-2 environment
in a coordinated mobility scenario. We design a task aimed
to emphasize the impact of one-to-one unicast communication
between two specific robots. We also enforce the use of multi-
hop communications, in order to make the task more difficult
and make network simulation play a major role. We compare
the results of the NS-2 communication model with simplified
communication models, and we highlight the resulting differ-
ence both in performance and behavior.

6.1. The Problem and the Coordination Scheme

Two selected robots need to coordinate their actions re-
motely. One of them is termed master and defines the mobility
pattern. The other is termed slave and is supposed to imitate the
same mobility pattern of the master, but on a different area. For
simplicity, we assume that robots are aware of their own posi-
tion and orientation. The master periodically sends the informa-
tion about its current destination to the slave (once per second).
The master and the slave are out of their communication range.
Hence, they need to use the other robots in the system to relay
their messages. The other robots perform their own tasks and
also communicate with each other. This is simulated by letting
them moving according to random mobility patterns (based on
the Random Waypoint mobility model) and generating data ac-
cording to random traffic generation patterns (a subset of the
robots generate CBR traffic to random destination robots).

As a result, a mobile ad-hoc network is formed among the
robots. The performance of the system is evaluated in terms of
the absolute error between the desired and the actual position
of the slave under the following three communication models:

• Ideal Model: all robots are within 1-hop communication
range and there are no communication errors;

• Simple Model: a simple disk model with a fixed communi-
cation range (set to 120 meters), which does not consider
interferences, collisions, etc.;

• 802.11 Model: the realistic 802.11 Wi-Fi model from NS-
2, with a transmission range set to 120 meters.

As in previous experiments, we use AODV [46] as multi-hop
routing algorithm and the UDP protocol in the transport layer.

6.2. Experimental Results

We simulated the above scenario for 22 foot-bots (20 robots
+ master + slave). Robots move within a wall enclosed area
of 500 × 500 m2, with a maximum speed of 10 m/s. 10 nodes
were used as CBR sources, each one generating 50 packets per

second (packet size is set to 70 bytes). The simulation was ex-
ecuted for 1000 seconds. Results are averaged over 10 simula-
tion runs. We analyzed the above mentioned averaged absolute
error as a function of time, as well as the distribution of the ab-
solute error, visualized as the empirical cumulative distribution
function (CDF). The distance between the master and the slave
is set to 250 meters. Therefore, a minimum number of 3 hops is
required for communication. We also validated the results in a
bigger network of 122 robots placed on an area of 1000 × 1000
m2 (5 or more hops are required for communication). In this
case, 60 CBR traffic sources were active, each one generating
10 packets per second. Results are shown in Figure 6.

0 200 400 600 800 1000
0

50

100

150

200

Time [sec]

A
v
e

ra
g

e
d

 a
b

s
o

lu
te

 e
rr

o
r

[m
]

802.11
SimpleModel

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Absolute error [m]

E
m

p
ir
ic

a
l
C

D
F

802.11
SimpleModel

0 200 400 600 800 1000
0

50

100

150

200

250

Time [sec]

A
v
e

ra
g

e
d

 a
b

s
o

lu
te

 e
rr

o
r

[m
]

802.11
SimpleModel

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Absolute error [m]

E
m

p
ir
ic

a
l
C

D
F

802.11
SimpleModel

Figure 6: Performance in terms of the absolute error between the desired and
the actual position of the slave. The error as a function of time (left), and the
error distribution as an empirical CDF (right). Results for 22 robots (top) and
for 122 robots (bottom).

In both scenarios, the results speak for themselves. On the
plots, we skipped the results of the Ideal Model: when we as-
sume perfect communication, the slave imitates the master al-
most perfectly and the absolute error is always within a few
meters. When we introduce the limited communication range
and multi-hop routing, performance decreases significantly (the
Simple Model). Going further and introducing the realistic
model includig radio interferences, collisions, and the opera-
tion of the 802.11 MAC protocol, results further deteriorate (the
802.11 Model). It is therefore apparent that the level of detail
in the communication model significantly affects the operation
of a networked multi-robot system.

In the last experiment, we compared the results obtained
when using two different routing protocols: AODV and An-
tHocNet [48] (Figure 7). AntHocNet is an adaptive routing
algorithm for mobile ad hoc networks derived from the Ant
Colony Optimization (ACO) framework. In the experimental
evalution reported in [48] it has shown to outperform AODV
in highly dynamic scenarios, such as the one considered here.
The results show that AntHocNet indeed reduces the influence
of unreliable communication and improves the performance of
the system. From this we can draw two important conclusions.
First, the choice of a specific network mechanism can signif-
icantly affect the operation of a multi-robot system, and need

10

to be carefully taken into account when drawing conclusions.
Second, the proposed simulation tools allow to effectively an-
alyze the efficacy of various network control algorithms before
implementing them on real robots.

0 200 400 600 800 1000
0

50

100

150

200

Time [sec]

A
v
e

ra
g

e
d

 a
b

s
o

lu
te

 e
rr

o
r

[m
]

AODV
AntHocNet

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Absolute error [m]

E
m

p
ir
ic

a
l
C

D
F

AODV
AntHocNet

Figure 7: Comparison of the performance (as on Fig. 6) when using differ-
ent routing algorithms: AODV and AntHocNet. Results for 22 robots and the
802.11 Model.

7. Application Scenario 2: Distributed Task Assignment

The aim of this section is to validate the results presented in
Section 6 in a significantly different communication scenario.
Namely, in the previous experiments we focused on the one-to-
one unicast communication between two distinguished robots.
Here, robots use the flooding mechanism to propagate messages
through the network, and all the messages are sent as broadcasts
without a specified destination. This implies that the commu-
nication scheme is quite robust and the influence of communi-
cation failures on the operation of a multi-robot team may be
limited. We employ the integrated ARGoS/NS-3 environment
to perform the experiments.

7.1. The Problem and the Coordination Scheme
We consider the following problem:

• within a wall enclosed area of 500 × 500 m2 there are ran-
domly placed events that robots need to service;

• each event requires n robots to be handled, and it takes t
seconds for the robots to service the event (we set n = 4
and t = 50 s);

• robots are initially randomly placed near to one of the
walls, they do not know the locations of the events, and
they are supposed to explore the area and service all the
events as fast as possible;

• robots are able to detect the events within a certain range
(rdiscover = 50 m) from their location;

• there are ntypes types of events that require different skills
to be handled (and there are also ntypes of skills). Each
robot is initially “equipped” with nskills randomly chosen
skills (we set ntypes = 2 and nskills = 1);

• in addition, and to penalize the “pointless” moves, robots
have initial energy for operating for tenergy seconds (tenergy

= 200). After the energy has fallen down below a cer-
tain level, the robot needs to immediately go to a charging
place and recharge its batteries. The charging place is lo-
cated in the center of the arena;

• robots are rewarded for handling the events by recharging
their batteries;

• robots may communicate with each other and their task is
to decide whether to explore for new events to be serviced
or to assist other robots in handling the already discovered
events, reaching the required number.

We use foot-bots with a similar configuration as in Section 5,
increasing their maximum speed to 5 m/s in order to simulate
a more dynamic scenario. Again, we assume that robots are
aware of their own position and orientation.

We implement a distributed coordination mechanism that is
based on exchanging messages between robots. There are five
types of messages that a robot can broadcast. A status message
S is sent to inform other robots about new discovered events to
be handled and also to inform how many robots are currently
waiting by the event. A “going to” message G is sent when a
robot decides to go and handle the event. A “cancelled going”
message C is send when a robot changes its decision and gives
up going to the event. A message H is sent when enough robots
approached to the event and started to service it. An “abandon-
ing” message A is sent when a robot waiting for help decides
to abandon the event. All messages contain the following in-
formation: the coordinates of the event, the number of robots
required to handle the event, the required skill, the number of
robots already waiting by the event, and the coordinates of the
sender. Robots store the above information in their local mem-
ory, and in addition they also store the estimated number of
robots that already decided to go to the given event (based on
the received G and C messages).

Each robot performs the following scheme:

• if there are no events stored in the memory, the robot per-
forms exploration and searches for new events. The search
strategy proposed in [7] is implemented, where robots per-
form a kind of probabilistic exploration with a memory of
already explored areas;

• when an event is discovered, the robot broadcasts the S
message to inform the others. If the robot has the required
skill, it waits for help to handle the event. Otherwise, it
continues the exploration;

• other robots that receive the S message update their mem-
ory and decide whether to go to the event or not. The deci-
sion is based on the information stored in the local mem-
ory. Namely, with the highest priority robots choose the
closest event between the events that require more robots
to be serviced (i.e., the number of required robots is higher
then the number of the robots already waiting by the event
plus the number of the robots that previously decided to go
there). If there are no such events, robots choose another
event with a certain probability or switch to exploration;

• the above decision is made every time a robot receives a
new message and updates its local memory.

11

7.2. Experimental Results
In our study, we simulated the above scenario for 20, 30 and

40 robots. We set the number of events to 5, 10, 15 and 20. Each
measurement is an average of 25 runs, and we use confidence
intervals and/or the Student’s t-Test to validate the statistical
significance of the results. We compared the following com-
munication models using flooding with duplicates detection for
multi-hop relaying:

• idealized one-hop communication, with unlimited trans-
mission range between all robots (referred to as all);

• probabilistic disc model: within a given range (r = 120 m),
the transmission is successful with a probability p. We use
three values of p, namely p = 0.5, p = 0.75 and p = 1.0
(referred to as p50, p75 and p100, respectively);

• the full 802.11a wifi model from NS-3 (referred to as NS-
3), including both physical channel and the MAC protocol
simulation.

5 10 15 20
500

1000

1500

2000

2500

3000

Number of events

T
a

s
k

 c
o

m
p

le
ti

o
n

 t
im

e
 [

s
]

p50

p75

p100

all

ns−3

p50

p75

p100

all

ns−3

5 10 15 20

600

800

1000

1200

1400

1600

Number of events

T
a

s
k

 c
o

m
p

le
ti

o
n

 t
im

e
 [

s
]

p50

p75

p100

all

ns−3

p50

p75

p100

all

ns−3

5 10 15 20

400

500

600

700

800

Number of events

T
a

s
k

 c
o

m
p

le
ti

o
n

 t
im

e
 [

s
]

p50

p75

p100

all

ns−3

p50

p75

p100

all

ns−3

Figure 8: Average task completion time. Results for 20, 30 and 40 robots
(top, middle and bottom, respectively). Error bars are skipped for clarity (see
Section 7.2 for details about statistical significance of the results).

We analyze the average task completion time (Figure 8). The
first observation is that the applied communication model in-
deed affects the performance of the considered robotic system,
confirming the results from Sec. 6. For 20 robots, the average
task completion time for the realistic model (NS-3) can be more
than 50% longer than in the case of the ideal communication
model (all).

It can be also observed that the results depend on the scenario
parameters. When we simulate 40 robots, the task is solved rel-
atively fast, regardless of the communication model used. In
this case, it is likely that the high density of nodes implied the
high connectivity in the network. At the same time, the net-
work was not overloaded as the amount of transferred data was
moderate and we used sequence numbers to limit the flooding.
As a result, a high level of the delivery ratio was achieved and
there is no statistically significant difference in the results ob-
tained for the different models. On the contrary, the differences
become visible when simulating 30 nodes: the realistic NS-3
model obtains similar results as p75 and p100, which are signif-
icantly better than the p50 model and significantly worse than
the idealized all model (confirmed by statistical tests with p-
values less than 0.1). For 20 robots, the results of the realistic
model are closer to p100, thus the communication seems to be
more reliable in this case. It may be explained by the decreased
interference implied by the lower density of nodes in the net-
work.

Summarizing the results presented in this section we can no-
tice that there is a significant influence of the communication
model used in simulations on the performance and behavior of
the considered multi-robot system. Moreover, it appears that it
is not a trivial task to choose a simplified communication model
(e.g., a probabilistic disk model) and set its parameters in a way
that it would well imitate a more advanced model offered by
network simulation tools. In particular, a simplified model that
offers accurate results in one scenario, can be inadequate in an-
other scenario.

8. Conclusions and Future Work

In this paper, we proposed RoboNetSim: a framework for
realistic simulation of networked robotic systems. The frame-
work allows to use advanced network simulation tools together
with robotic simulators. We claim that the accuracy of mod-
ern network simulators is sufficient to give an overall overview
on how a typical communicating multi-robot system will work
in the real world. We support this claim by presenting various
validation tests of network simulators found in the literature.
We presented two case studies that demonstrate the value of the
proposed framework.

We believe that the proposed simulation tools can be a
step toward better designed and more effective real-world au-
tonomous robotic systems. Namely, the robotic controllers pre-
pared in the simulation and tested in terms of their robustness
to communication issues can be directly ported to real robots,
with a reasonable chance of meeting design expectations. In
fact, the controllers created in ARGoS can be directly uploaded
to robots. In a similar way, both NS-2 and NS-3 simulators
provide interfaces to the Click Modular Router [49]. Thus, one
may implement a new routing algorithm in Click, simulate its
operation in a multi-robot system using the RoboNetSim frame-
work, and then run exactly the same routing code on any Linux-
based robot.

As a future work, we see two main directions. The first one
is to validate the results of the simulation of large networked

12

multi-robot systems in a real-world experimental testbed. We
already have a small fleet of robots and their models in ARGoS,
yet we plan to extend it and create a large heterogeneous robotic
swarm. This direction may also include a further increase of
the simulations realism by introducing and validating the de-
pendency between communication models and objects in the
simulated space (e.g., obstacles and robots themselves attenuat-
ing signal, generating noise, etc.). The second direction would
be to employ RoboNetSim in order to investigate the operation
of various network control algorithms in large multi-robot sce-
narios. In particular, we are interested in the performance of
intelligent routing algorithms, such as the AntHocNet. We also
plan to extend RoboNetSim with an interface that would allow
to study feedback mechanisms between robotic controllers and
network control algorithms (at various network layers).

References

[1] M. Dorigo, E. Sahin, Guest Editorial. Special Issue: Swarm Robotics,
Autonomous Robots 17 (2–3) (2004) 111–113.

[2] L. Bayindir, E. Sahin, A review of studies in swarm robotics, Turkish
Journal of Electrical Engineering 15 (2).

[3] Y. U. Cao, A. S. Fukunaga, A. B. Kahng, Cooperative Mobile Robotics:
Antecedents and Directions, Autonomous Robots 4 (1997) 226–234.

[4] S. Nouyan, A. Campo, M. Dorigo, Path formation in a robot swarm. Self-
organized strategies to find your way home, Swarm Intelligence 2 (1)
(2008) 1–23.

[5] F. Ducatelle, G. A. Di Caro, C. Pinciroli, F. Mondada, L. Gambardella,
Communication assisted navigation in robotic swarms: self-organization
and cooperation, in: Proceedings of the 24th IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 4981–4988, 2011.

[6] C. Tschudin, P. Gunningberg, H. Lundgren, E. Nordström, Lessons from
Experimental MANET Research, Elsevier Ad Hoc Networks Journal 3 (2)
(2005) 221–233.

[7] D. Zhang, G. Xie, J. Yu, L. Wang, Adaptive task assignment for multiple
mobile robots via swarm intelligence approach, Robots and Autonomous
Systems 55 (2007) 572–588.

[8] M. Kudelski, M. Cinus, L. Gambardella, G. A. Di Caro, A Framework for
Realistic Simulation of Networked Multi-Robot Systems, in: Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012 (to
be published).

[9] ns-2, The Network Simulator, Web:http://www.isi.edu/nsnam/ns, .
[10] ns-3, Discrete-event network simulator for Internet systems, Web: http:

//www.nsnam.org/, .
[11] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-

billa, N. Mathews, E. Ferrante, G. A. Di Caro, F. Ducatelle, T. Stirling,
A. Gutierrez, L. Gambardella, M. Dorigo, ARGoS: a modular, multi-
engine simulator for heterogeneous swarm robotics, in: Proceedings of
the 24th IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 5027–5034, 2011.

[12] B. Gerkey, R. Vaughan, A. Howard, The Player/Stage Project: Tools for
Multi-Robot and Distributed Sensor Systems, in: Proceedings of the 11th
Int. Conf. on Advanced Robotics (ICAR), 2003.

[13] R. T. Vaughan, Massively Multi-Robot Simulations in Stage, Swarm In-
telligence 2 (2-4) (2008) 189–208.

[14] W. Kiess, M. Mauve, A survey on real-world implementations of mobile
ad-hoc networks, Ad Hoc Networks 5 (3) (2007) 324–339.

[15] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, C. Elliott, Experimen-
tal evaluation of wireless simulation assumptions, in: Proceedings of the
ACM Symp. on Modeling, analysis and simulation of wireless and mobile
systems, 78–82, 2004.

[16] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, J. Zahorjan, Measurement-
based models of delivery and interference in static wireless networks, in:
Proceedings of the ACM Conf. on Applications, technologies, architec-
tures, and protocols for computer communications, 51–62, 2006.

[17] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K.-C. Lan, Y. Xu,
W. Ye, D. Estrin, R. Govindan, Effects of Detail in Wireless Network

Simulation, in: In Proceedings of the SCS Multiconference on Distributed
Simulation, 3–11, 2001.

[18] D. Johnson, Validation of Wireless and Mobile Network Models and Sim-
ulation, in: Proc. of the DARPA/NIST Network Simulation Validation
Workshop, 1999.

[19] S. Ivanov, A. Herms, G. Lukas, Experimental validation of the ns-2 wire-
less model using simulation, emulation, and real network, in: In 4th
Workshop on Mobile Ad-Hoc Networks (WMAN07), 433–444, 2007.

[20] A. Torres, C. Calafate, J.-C. Cano, P. Manzoni, Deploying a real IEEE
802.11e testbed to validate simulation results, in: Proceedings of the 34th
IEEE Conf. on Local Computer Networks, 109–115, 2009.

[21] G. Pei, T. R. Henderson, Validation of OFDM error rate model in ns-3,
Tech. Rep., Boeing Research & Technology, 2010.

[22] N. Baldo, M. Requena-Esteso, J. Núñez Martı́nez, M. Portolès-Comeras,
J. Nin-Guerrero, P. Dini, J. Mangues-Bafalluy, Validation of the IEEE
802.11 MAC model in the ns3 simulator using the EXTREME testbed,
in: Proceedings of the 3rd Int. ICST Conf. on Simulation Tools and Tech-
niques, 64:1–64:9, 2010.

[23] R. S. Gray, D. Kotz, C. Newport, N. Dubrovsky, A. Fiske, J. Liu, C. Ma-
sone, S. McGrath, Y. Yuan, Outdoor experimental comparison of four
ad hoc routing algorithms, in: Proceedings of the 7th ACM Int. Symp.
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
220–229, 2004.

[24] J. Liu, Y. Yuan, D. M. Nicol, R. S. Gray, C. C. Newport, D. Kotz, L. F.
Perrone, Empirical Validation of Wireless Models in Simulations of Ad
Hoc Routing Protocols, Simulation 81 (4) (2005) 307–323.

[25] O. Michel, Webots: Professional Mobile Robot Simulation, Journal of
Advanced Robotics Systems 1 (1) (2004) 39–42.

[26] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, C. Scrapper, USARSim: a
robot simulator for research and education, in: Proceedings of the IEEE
Int. Conf. on Robotics and Automation, 1400–1405, 2007.

[27] P. Bahl, V. N. Padmanabhan, RADAR: An In-Building RF-Based User
Location and Tracking System, in: Proceedings of the IEEE Joint Conf. of
the IEEE Computer and Communications Societies (INFOCOM), vol. 2,
775–784, 2000.

[28] A. R. Mosteo, L. Montano, M. G. Lagoudakis, Multi-robot routing under
limited communication range, in: Proceedings of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 1531–1536, 2008.

[29] W. Sheng, Q. Yang, J. Tan, N. Xi, Distributed multi-robot coordination in
area exploration, Robotics and Autonomous Sys. 54 (12) (2006) 945–955.

[30] M. Ji, M. Egerstedt, Distributed Coordination Control of Multiagent Sys-
tems While Preserving Connectedness, IEEE Transactions on Robotics
23 (4) (2007) 693–703.

[31] M. Zavlanos, A. Jadbabaie, G. Pappas, Flocking while preserving net-
work connectivity, in: Proceedings of the 46th IEEE Conf. on Decision
and Control, 2919–2924, 2007.

[32] L. Xiaoli, X. Yugeng, Flocking of multi-agent dynamic systems with
guaranteed group connectivity, in: Proceedings of the 27th Chinese Con-
trol Conference (CCC), 546–551, 2008.

[33] M. Pohjola, S. Nethi, R. Jantti, Wireless control of mobile robot squad
with link failure, in: Proceedings of the 6th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), 648–656, 2008.

[34] S. Nethi, M. Pohjola, L. Eriksson, R. Jantti, Platform for Emulating Net-
worked Control Systems in Laboratory Environments, in: Proceedings
of the IEEE Int. Symp. on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 1–8, 2007.

[35] A. Al-Hammouri, V. Liberatore, H. Al-Omari, Z. Al-Qudah, M. S. Bran-
icky, D. Agrawal, A co-simulation platform for actuator networks, in:
Proceedings of the 5th International Conference on Embedded Networked
Sensor Systems (SenSys), ISBN 978-1-59593-763-6, 383–384, 2007.

[36] W. Ye, R. Vaughan, G. Sukhatme, J. Heidemann, D. Estrin, M. Matarić,
Evaluating control strategies for wireless-networked robots using an inte-
grated robot and network simulation, in: Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2941–2947, 2001.

[37] H. Sugiyama, T. Tsujioka, M. Murata, Autonomous chain network forma-
tion by multi-robot rescue system with ad hoc networking, in: Proceed-
ings of the IEEE International Workshop on Safety Security and Rescue
Robotics (SSRR), 1–6, 2010.

[38] P. De, A. Raniwala, R. Krishnan, K. Tatavarthi, J. Modi, N. Syed,
S. Sharma, T. Chiueh, MiNT-m: an autonomous mobile wireless experi-

13

http://www.isi.edu/nsnam/ns
http://www.nsnam.org/
http://www.nsnam.org/

mentation platform, in: Proc. of the 4th ACM Int. Conference on Mobile
Systems, Applications and Services (MobiSys), 124–137, 2006.

[39] R. Stanica, E. Chaput, A.-L. Beylot, Simulation of vehicular ad-hoc net-
works: Challenges, review of tools and recommendations, Computer Net-
works 55 (14) (2011) 3179–3188, ISSN 1389-1286.

[40] M. Piórkowski, M. Raya, A. L. Lugo, P. Papadimitratos, M. Grossglauser,
J.-P. Hubaux, TraNS: realistic joint traffic and network simulator for
VANETs, ACM SIGMOBILE Mobile Computing and Communications
Review 12 (1) (2008) 31–33, ISSN 1559-1662.

[41] J. Härri, P. Cataldi, D. Krajzewicz, R. J. Blokpoel, Y. Lopez, J. Leguay,
C. Bonnet, L. Bieker, Modeling and simulating ITS applications with
iTETRIS, in: Proceedings of the 6th ACM workshop on Performance
Monitoring and Measurement of Heterogeneous Wireless and Wired Net-
works (PM2HW2N), 33–40, 2011.

[42] C. Sommer, Z. Yao, R. German, F. Dressier, Simulating the influence of
IVC on road traffic using bidirectionally coupled simulators, in: Proceed-
ings of IEEE INFOCOM Workshops, 1–6, 2008.

[43] N. Koenig, A. Howard, Design and Use Paradigms for Gazebo, An Open-
Source Multi-Robot Simulator, in: Proceedings of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2149–2154, 2004.

[44] QualNet Simulator, Scalable Network Technologies, Web: http://www.
scalable-networks.com, .

[45] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi,
T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy,
D. Burnier, A. Campo, A. L. Christensen, A. Decugnière, G. A. Di Caro,
other 22 authors, Swarmanoid: a novel concept for the study of heteroge-
neous robotic swarms, IEEE Robotics & Automation Magazine .

[46] C. Perkins, E. Royer, Ad-hoc On-Demand Distance Vector Routing, in: In
Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications, 90–100, 1997.

[47] M. Ikeda, E. Kulla, L. Barolli, M. Takizawa, R. Miho, Performance Eval-
uation of Wireless Mobile Ad-Hoc Network via NS-3 Simulator, in: Pro-
ceedings of the 14th International Conference on Network-Based Infor-
mation Systems (NBiS), ISSN 2157-0418, 135–141, 2011.

[48] G. A. Di Caro, F. Ducatelle, L. M. Gambardella, AntHocNet: An adap-
tive nature-inspired algorithm for routing in mobile ad hoc networks, Eu-
ropean Transactions on Telecommunications 16 (2005) 443–455.

[49] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek, The click
modular router, ACM Trans. Comput. Syst. 18 (3) (2000) 263–297.

14

http://www.scalable-networks.com
http://www.scalable-networks.com

	Introduction
	Related Work
	Reliability of Network Simulations
	Simulation of Networked Multi-Robot Systems

	RoboNetSim: An Integrated Simulation Framework
	Information flow
	The Architecture

	Sample Implementations
	Robot and Network Simulators
	ARGoS Interface
	NS-2 Interface
	NS-3 Interface
	Step-by-step Integration: Stage Simulator

	Evaluation Study
	Computational Performance
	Overhead
	Correctness

	Application Scenario 1: Coordinated Mobility
	The Problem and the Coordination Scheme
	Experimental Results

	Application Scenario 2: Distributed Task Assignment
	The Problem and the Coordination Scheme
	Experimental Results

	Conclusions and Future Work

