Collective and Swarm Intelligence

Master in Intelligent Systems, 2011–2012

Gianni A. Di Caro

gianni@idsia.ch

Dalle Molle Institute for Artificial Intelligence (IDSIA)

Lugano, Switzerland
1. Collective and Swarm Intelligence (SI): Nature’s inspiration, general principles, self-organization

2. Main characteristics of SI design

3. Focus: Swarm Robotics

4. Focus: Particle Swarm Optimization (PSO)
Swarm Intelligence: a relatively novel research field that deals with collective behaviors that result from the local interactions of individual components with each other and with their environment.

1. **Modeling**: Study of collective behaviors in nature, such as nest building, foraging, and item sorting in insect societies, and swarming, flocking, herding, and schooling behaviors in vertebrates.

2. **Engineering**: Bottom-up design of distributed systems that display forms of useful and/or interesting behavior at the global level as a result of the actions of a number of units interacting with one another and with their environment at the local level. This design can get useful inspiration from Nature’s systems!

 - **Applications**: complex optimization problems, routing in networks, swarm robotics, ...
Acting as a swarm, not as an individual!

- **Social behavior** pays back!
- **Many** is better than one (right?)
- Implicit and/or explicit **cooperation** is an (evolutionary) advantage
- Acting as a unit is the key, here it is some compelling evidence!

https://www.youtube.com/watch?v=TWew0EqM7e4
Fish schooling
Termites’ nest
Ants, bees, and fishes and at work

- **Ants**: leaf-cutting, breeding, chaining
- **Ants**: Food catering
- **Ants**: Learning the shortest path between food and nest
- **Ants**: an agricultural and transportation system
- **Bees**: waggle dance to recruit workers
- **Sardines**: schooling and escaping predators
Locusts, birds, and fireflies at work

- **Locusts**: swarming and eating everything
- **Birds**: Roosting
- **Fireflies**: synchronized flashing
What do all these behaviors have in common?

- Distributed society of autonomous individuals/agents
- Control is fully distributed among the agents
- Communications among the individuals are localized
- Interaction rules and information processing seem to be simple: minimalist agent capabilities and interaction protocols
- System-level behaviors appear to transcend the behavioral repertoire of the single agent
- Deliberative and/or self-organizing cooperation is at work
- Local information propagates in a multi-step fashion
- The overall response of the system features:
 - Robustness
 - Adaptivity
 - Scalability

Swarm Intelligence design applies these same principles to obtain these same objectives as in Nature’s complex adaptive systems
Bottom-up vs. Top-down design

- Ontogenetic and phylogenetic evolution has (necessarily) followed a **bottom-up** approach *(grassroots)* to **design** systems:
 - Instantiation of the basic units (atoms, cells, organs, organisms, individuals, ...) composing the system and let them (self-)organize to generate more complex/organized system-level behaviors and/or structures
 - *Population + Interaction protocols* are “more important” than the single modules

- On the other hand, from an engineering point of view we can also choose a **top-down** approach:
 - Acquisition of comprehensive knowledge about the problem/system to deal with, analysis, decomposition, definition of a possibly optimal strategy
Challenges of SI design

Given a task/problem to deal with, a number of design choices:

1. Characteristics/skills of the agents
2. Size of the population (related to the choice 1.)
3. Neighborhood definition
4. Interaction protocols and information to exchange
5. Where the information is updated (agent, channel, environment)
6. Use or not of randomness (or, heuristic decisions)
7. Synchronous or asynchronous activities and interactions
8. ...

Lots of parameters

Predictability and efficiency are important issues

Is a top-down approach better?
The philosopher’s stone of computing?

1. Create a large number of autonomous, minimalist units
2. Spread them in the environment and forget about them
3. Let them sensing and interacting locally
4. Let them exchange information and act cooperatively
5. They will (self-)adapt, (self-)learn, (self-)evolve, (self-)repair, (self-)organize . . .
6. They will create a fully autonomic system
7. They will do the job for us, adapting to changes in the environment, in the structure of the system, in the tasks . . .

This is the ultimate goal of swarm intelligence design!
Taxonomy based on Neighborhood, Communication, & Mobility

- **Point-to-point**: antennation, trophallaxis (food or liquid exchange), mandibular contact, direct visual contact, chemical contact, hardwired direct connections (neurons, cells), unicast radio contact

- **Limited-range Broadcast**: the signal propagates to some limited extent throughout the environment and/or is made available for a rather short time (e.g., use of lateral line in fishes to detect water waves), generic visual detection, radio broadcast

- **Indirect**: two individuals interact indirectly when one of them modifies the environment and the other responds asynchronously to the modified environment at a later time. This is called stigmergy [Grassé, 1959] (e.g., pheromone laying/following, post-it, web)

- **Physical mobility**: individuals autonomously move across the states of an embedding environment, such as connection topology changes over time (based on neighborhood and communication capability), different areas of the environment are accessed in parallel, density and connectivity of the system network depend on time and space

- **Static positioning, state evolution**: connection topology and environment embedding do not change over time. It is the information that moves in multi-hop fashion. The internal state of an individual changes over time, and, as a consequence, also its surrounding environment
SI algorithmic frameworks (and relatives)

- **Stigmergy, Mobility** → **Ant Algorithms** and in particular to **Ant Colony Optimization (ACO)** [Dorigo & Di Caro, 1999], which is based on the shortest path finding abilities of ant colonies

- **Stigmergy** → **Cultural Algorithms** [Reynolds, 1994], are population-based algorithms derived from processes of cultural evolution and exchange in societies

- **Broadcast-like, Mobility** → **Particle Swarm Optimization** [Kennedy & Eberhart, 2001], related to schooling and flocking behaviors

- **Point-to-point** → **Hopfield neural networks** [Hopfield, 1982], derived from brain’s structure and behavior

- **Point-to-point and neighbor broadcast** → **Cellular Automata** [Wolfram, 1984], **Gossip algorithms** [Demers et al., 1987]

- **Different combinations of communication and mobility** → **Swarm robotics, Adaptive Routing and Information Gossip in telecommunication networks**

- **Genetic algorithms, Artificial immune systems**, ...
IDSIA research on the application of SI design principles

- **Swarm robotics**: study of cooperation, interaction and self-organization in systems composed of many (relatively) simple robots

- **Combinatorial optimization**: reverse-engineering of the pheromone-based shortest path finding behavior of ant colonies to solve complex optimization problems such as the Traveling Salesman Problem (TSP) or the Vehicle Routing Problem (VRP) (both in academic and industrial contexts)

- **Network routing**: application of the same behaviors from ant colonies to solve problems of data routing (i.e., minimum length/delay paths) in dynamic telecommunication networks
Self-assembly in homogeneous swarms

- **Swarm-bots** project, EU-funded (2002-2005): self-assembly and cooperation in homogeneous robotic swarms

http://www.youtube.com/watch?v=CJOubyiITsE
Self-organization and cooperation in heterogeneous swarms

- **Swarmanoid** project, EU-funded (2006-2010): communication, self-organization, and cooperation in heterogeneous swarms

http://www.youtube.com/watch?v=M2nn1X9Xlps
Self-organized path finding

http://www.youtube.com/watch?v=Ghphiawt058

http://www.youtube.com/watch?v=hYhid0dcAtI
Human-swarm interaction and cooperation

- **NCCR Robotics** project, Swiss-funded (2011-2014): symbiotic peer-to-peer interaction and cooperation between humans and robotic swarms

http://www.youtube.com/watch?v=kHpXEcYanvY
Mixed swarms of humans, animals, and robots

- **SWARMIX** project, Swiss-funded (2011-2014): cooperation and interaction in mixed swarms of humans, dogs, and robots for *search and rescue missions*

https://www.youtube.com/watch?v=C-ix2iBMoyY
The Swarmanoid system
http://www.youtube.com/watch?v=M2nn1X9Xlps

Swarming can be very scary for humans!
http://www.youtube.com/watch?v=CJOubyiITsE

Morphogenesis: reshaping swarm structure
http://www.youtube.com/watch?v=-G66iL__VdA

Another example of self-reconfiguring swarms, with human interaction
http://www.youtube.com/watch?v=se318w2LXD0

The Smavnet project: flying like birds
http://www.youtube.com/watch?v=pfYs5C8D4uk

Human crowd simulations
http://www.youtube.com/watch?v=Hc6kng5A8lQ

Human-swarm interaction at IDSIA
https://www.youtube.com/watch?v=Q900Gf7YC0c